
Particle Swarm Optimization with Flocking and Genetic Programming

Seth Chatterton and Professor Stephen Majercik

Computer Science Department, Bowdoin College, Brunswick, Maine

Introduction Methods & Materials Results & Discussion
Particle swarm optimization, or PSO, is a widely used optimization

algorithm used to find the optimum of multidimensional functions. For
example, if we wanted to find the lowest point in a landscape, PSO could
help us find it. PSO works by sending out multiple particles that fly across
the function space, which in our example is the landscape, and measure
the function value at that point, in this case the height of the landscape.
Each particle then looks at what function value its neighbors have, and
adjusts its velocity at each iteration to head towards its neighbors if the
neighbors have found a better spot. Much of PSO research is determining
what a particle’s neighborhood should be. In our research, we try to
create good neighborhoods for our PSO particles using flocking behavior.

Flocking in nature determined mostly through three parameters:
alignment, cohesion, and separation. Alignment means that all of the
creatures in a flock tend to align their direction with one another,
cohesion means they tend to move toward the average position of the
group, and separation means they tend to not get too close to their
neighbors. These three parameters create flocks of particles within a
separate flocking space. Particles within a certain radius of one another
are added to that particle’s neighborhood, which is then used as the
neighborhood in the PSO function space.

The next question is then how we determine what values of flocking
parameters we use for our flocking space. For this, we used genetic
programming. Essentially, our genetic program mimics evolution in
nature. Our genetic program creates a population of random programs
that set flocking parameters. These programs are then evaluated on how
good the neighborhoods they produce through flocking behavior are. The
best programs are saved for the next generation, are mixed with other
good programs to create new programs, and occasionally mutated. This
hopefully produces a program that can dynamically set flocking
parameters to create very good neighborhoods for PSO.

Research Goals & Questions
• Find a more effective and efficient particle swarm optimization algorithm 

(PSO).

• Determine if flocking behavior is a useful mechanism for determining 
particle neighborhoods

• Determine if genetic programming is a useful mechanism for optimizing 
flocking behavior

Acknowledgements
Sophia Ardell, ‘17, for her previous work on this project in the summer of 2017
Professor Stephen Majercik, for his previous work on this project
Funded by the Maine Space Grant Consortium. Bowdoin College is an affiliate of the Maine Space Grant Consortium.

References
[1] Mohais, Arvind S., et al. “Neighborhood Re-Structuring in Particle Swarm Optimization.” AI 2005: Advances in Artificial 
Intelligence Lecture Notes in Computer Science, Dec. 2005, pp. 776–785., doi:10.1007/11589990_80.

The algorithm consists of three components: a particle swarm
optimizer, a flocking systems that controls the neighborhood of each
particle, and a genetic program, which determines how the flocking
parameters change. A neighborhood is a set of particles that PSO uses to
determine the velocity of any given particle. If a neighbor in a particle’s
neighborhood has found a more optimal position, the particle will move
toward that neighbor. In this algorithm, flocking behavior determines a
particle’s neighborhood by using a separate flocking space. Each particle
has a corresponding particle in the flocking space. In the flocking space,
particle move according to the alignment, cohesion, and separation
parameters described in the introduction, as well as maximum speed,
normal speed, pace keeping, neighborhood radius, and random motion
probability parameters. If a particle X in the flocking space is within the
neighborhood radius of particle Y, X is added to Y’s neighborhood. Below
is a visualization of the flocking behavior.

Right: An example of flocking behavior exhibited by
this algorithm. The red particles form flocks, and 
nearby particles become neighbors in the PSO algorithm. 

To control the flocking behavior, we decided to use programs created
through a genetic algorithm. These programs are trees consisting of
nodes, and each node performs some action. Some of the important
nodes are SEQUENCE, IF, ASSIGN, and VAR nodes. The program performs
a traversal of the tree, performing the actions specified in the tree such
as “assign cohesion a value of 0.5”. PSO then runs some number of times
to get an average for how well the tree performs, with each individual in
the population receiving a fitness value according to how well it did. The
fitness function used was

where µN is the average value found through PSO of the standard, non-
flocking algorithm, µF is the average value found through PSO of our
flocking algorithm, and Ifit is an arbitrary scaling factor called the fitness
interval. Trees are then selected using tournament selection, such that
trees that performed better in PSO and thus have a higher fitness are
more likely to reproduce in the next generation. A large number of
generations are performed, which ideally produce better and better
flocking programs.

To test the algorithm, I used Bowdoin’s High Performance Computing
(HPC) Grid, which allowed me to test dozens of settings at a time by
running tests in parallel. Parameters that I tested were the size of the
genetic program, the crossover rate (how often to genetic programs get
mixed together), the genetic program mutation rate, and the function to
optimize.

In the final round of testing performed this summer, a population
size of 1000 was used, and the programs were evolved for 100
generations. The crossover rate was set to 0.7, while the mutation rates
tested were 0.001, 0.01, and 0.5. Each tree was tested 50 times before
assigning a fitness value to it, in order to determine how good that
particular program was on average. The baseline algorithm used for
comparison was the standard PSO algorithm with a global best
neighborhood topology. The PSO algorithm ran for 1000 iterations per
test. Three different functions standard for testing PSO were used:
Ackley, Rosenbrock, and Rastrigin. Tree sizes of depth 9 and 11 were
tried, and various sized flocking spaces of 250, 500, and 1000 length
squares were tried. Testing on the HPC Grid took 14 days to complete.

As a whole, the population of genetic programs evolved over time.
Initially, most of the programs performed worse than the baseline PSO
algorithm. Over time, however, they surpassed the fitness value of zero
signaling that they performed equally as well, and the average fitness
always stabilized to a positive value, indicating that on average the flock
programs were performing better than the baseline algorithm.

Right: An example of the evolution of a population of 
genetic programs which control flocking behavior. 
Both maximum and mean fitness increase and then
level off. This graph is of the population that produced
the best Rastrigin value found described below.

However, even though these results surpassed our baseline, does not 
mean they are up to the state of the art. Compared to our best PSO 
values of 29.430 for Rastrigin, 19.258 for Rosenbrock, and 3.58E-4 for 
Ackley, Mohais et al. report values of 12.860, 26.560, and 1.32E-7 
respectively[1]. Since lower is more optimal, the comparison of top 
algorithms in Mohais et al. shows that this algorithm is not up to par, 
with possibly one exception. Our algorithm actually performed better on 
Rosenbrock, but it should be noted that our result is the best of 
thousands of tests, and could be due to statistical variation. Further 
testing is needed to verify the repeatability of these results. 


